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Abstract

Although no universally accepted definition of causality exists, in practice one is
often faced with the question of statistically assessing causal relationships in different
settings. We present a uniform general approach to causality problems derived from
the axiomatic foundations of the Bayesian statistical framework. In this approach,
causality statements are viewed as hypotheses, or models, about the world and the
fundamental object to be computed is the posterior distribution of the causal hypothe-
ses, given the data and the background knowledge. Computation of the posterior,
illustrated here in simple examples, may involve complex probabilistic modeling but
this is no different than in any other Bayesian modeling situation. The main advan-
tage of the approach is its connection to the axiomatic foundations of the Bayesian
framework, and the general uniformity with which it can be applied to a variety of
causality settings, ranging from specific to general cases, or from causes of effects to
effects of causes.
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1 Introduction

Causality is a fundamental concept in science, technology, and our general understanding of

the world. However its precise definition is problematic: no universally accepted definition

of causality exists even to the point that some have advocated avoiding precise definitions

of the concept [“The law of causality...like much that passes muster among philosophers, is

a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed

to do no harm” (B. Russell); “Causality is not to be strongly defined; thus theory cannot

be created.” (L. Zadeh)].

While it is clear that correlation is not causation, the complexity of defining “A causes

B” is compounded by several factors. In complex, but typical, situations one is confronted

with multiple causes and multiple effects interacting in complex ways through mechanisms

that are often only partially understood, in both individual and general cases (e.g. re-

lationships between drugs, age, and cancer in a specific individual or in the population).

Furthermore, causal inference may proceed in the forward direction associated with the

effects of causes (what might happen if we do A) or in the reverse direction associated with

the causes of effects (what causes B).

In spite of these difficulties, in practice, especially in legal or scientific settings, one

is often faced with the problem of rationally evaluating possible causal relationships and

teasing out whether something classified as being statistically significant is associated with

a causal relationship or not. With the ongoing data deluge, this has become an area

of intense research and several statistical frameworks have been developed. Among the

most widely used or debated ones are the counterfactual approach usually associated with

Rubin (Rubin, 1974, 1977, 1990), and Pearl’s (Directed Acyclic Graph) approach (Pearl,

2000, 2009) (see also Illari et al. (2011); Peters et al. (2011), among many others).

While some statistical frameworks may depend on a precise definition of causality,

or on the characteristics of the statistical problem being considered–such as causality in a

specific case as opposed to causality in the more general setting, or the important distinction

between reverse causal inference (causes of effects) versus forward causal inference (effects

of causes) (Dawid et al., 2014; Pearl, 2015), it is conceivable that some frameworks may

be more general and apply in some sense uniformly to different situations and different
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definitions of causality.

The Bayesian statistical framework, in particular, provides a general framework for

statistical questions, and thus it is natural to ask what a Bayesian framework for the study

of causality should look like? Thus, in short, the goal here is to go back to the foundations of

the Bayesian approach and try to derive a complementary, general, framework for causality

analysis derived from Bayesian first principles.

2 The Bayesian Statistical Framework and its Axioms

To begin with, it is useful to review the axiomatic foundations of the Bayesian statistical

framework (Cox, 1964; Savage, 1972; Jaynes, 2003; Bernardo and Smith, 2001). Broadly

speaking there are at least two related kinds of axiomatic frameworks. The first kind is

based on “monetary” notions, such as utility and betting. As we do not think that monetary

considerations are essential to science and statistics, we choose the second framework, based

on the notion of “degrees of belief”.

The starting point for this framework is to consider an observer who has some back-

ground knowledge B and observes some data D. The observer is capable of generating

hypotheses or models, from a certain class of hypotheses or models. The process by which

these models are generated, or by which the class of models is changed, are outside of the

scope of the framework.

Bayesian analysis is concerned with the assessment of the quality of the hypotheses

given the data and the background model. Given an hypothesis H, the fundamental object

of Bayesian statistics is the “observer’s degree of belief” π(H|D,B) in H, given D and B.

If the background knowledge B changes, the degree of belief may change, one of the main

reasons this approach is sometimes called“subjective” (incidentally, a major marketing error

of the Bayesian camp and a main argument for the detractors of this approach). Although

“subjective”, the approach aims to be rational in the sense that the fundamental quantity

π(H|D,B) should satisfy a set of reasonable axioms. Usually three axioms are imposed on

π(H|D,B).

First π should be transitive, in the sense that given three hypotheses H1, H2, and H3,
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if π(H1|D,B) ≼ π(H2|D,B) and π(H2|D,B) ≼ π(H3|D,B), then:

π(H1|D,B) ≼ π(H3|D,B) (1)

Here X ≼ Y is meant to represent that hypothesis Y is preferable to hypothesis X. The

transitivity hypothesis essentially allows mapping degrees of beliefs to real numbers and

replacing ≼ with ≤.

The second axiom states that there exists a function f(x) establishing a systematic

relationship between the degree of belief in an hypothesis H and the degree of belief in its

negation ¬H. Intuitively, the greater the belief in H, the smaller the belief in ¬H should

be. In other words:

π(H|D,B) = f(π(¬H|D,B)). (2)

Finally, the third axiom, states that given two hypotheses H1 and H2, there exists a

function F (x, y) establishing a systematic relationship such that:

π(H1, H2|D,B) = F [π(H1|D,B), π(H2|H1, D,B)]. (3)

The fundamental theorem that results from these axioms is that degrees of beliefs can be

represented by real numbers and that if these numbers are re-scaled to the [0, 1] interval,

then π(H|D,B) must obey all the rules of probability. In particular, f(x) = 1 − x and

F (x, y) = xy. As a result, in what follows we will use the notation P (H|D,B) and call it

the probability of H given D and B.

In particular, when re-scaled to [0, 1], degrees of belief must satisfy Bayes theorem:

P (H|D,B) = P (D|H,B)P (H|B)
P (D|B)

. (4)

which is the fundamental tool for inversion, where P (H|B) is called the prior of the hy-

pothesis, P (D|H,B) the likelihood of the data, and P (D|B) the evidence.

Thus fundamentally, in this framework, probabilities are viewed very broadly as degrees

of beliefs assigned to statements (or hypothesis or models) about the world, rather than

the special case of frequencies associated with repeatable events.
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In practical situations, the elegance and flexibility of the Bayesian framework is often

faced with two well-known challenges: (1) the choice of the prior degree of belief P (H|B);

and (2) the actual computation of the posterior P (H|D,B), and any related expectations,

which may not always be solvable analytically and may require Monte Carlo approaches

(Gelman et al., 1995; Gilks et al., 1995).

3 Causal Relationships as Hypotheses about theWorld

Given this foundational framework, how then should causality be viewed from a Bayesian

standpoint? It is best to consider a simple example.

Suppose that Mr. Johnson is driving his car at 80 miles per hour and frontally collides

with another stationary car. After the collision, we observe that Mr. Johnson is dead and

wish to ask the simple causality question: was the death of Mr. Johnson caused by the high-

speed collision? From our past experiences and background knowledge, we immediately get

a feeling that this is likely to be the case. However, upon reflection, we also realize that

one cannot be absolutely certain of this causal relationship. What if Mr. Johnson suffered

a deadly heart attack two seconds before the collision? With additional data, such as the

results of an autopsy, these two possibilities could perhaps be disentangled, but one may,

or may not, have access to this additional data.

In short, it should be clear that the statement “the death of Mr. Johnson was caused

by the high-speed collision” should itself be regarded as a hypothesis about the world. Our

degree of belief in this hypothesis may vary depending on the data available to support it

and our background knowledge. Thus, from a Bayesian standpoint, causality relationships

ought to be treated like any other hypothesis or model. And therefore one must conclude

that the fundamental object of Bayesian causality analysis ought to be the com-

putation of the probability of the causality hypothesis given the available data

and background knowledge.

Although this conclusion comes straight out of the foundations of the Bayesian statisti-

cal framework, it is perhaps surprising that, to the best of our knowledge, it has not been

clearly articulated as such. In fact, the first reaction of several statisticians we consulted
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with is to say something like “I would not know where to start in order to compute such

probability”.

Note that this general framework applies uniformly both to specific (e.g. Mr. Johnson)

or general (e.g. drivers) situations. It applies also uniformly to causes of effects and effects

of causes analyses, as these primarily correspond to a change in the data. In one case, the

effects are observed, in the other case the causes are observed. This is an important point,

as there has been a general tendency to fragment causality analysis into a growing number

of “sub-areas” by categorizing different kinds of data (e.g. observational, experimental)

and different kinds of analyses (e.g. effect of causes, causes of effects) and studying each

combination separately, while in reality there is a continuum of situations (see also Rubin

et al. (2008)).

One concern one may raise is that the framework described applies only to binary propo-

sitions and may not be able to handle continuous hypothesis or causal effect sizes. However

this is not the case. First, any continuous hypothesis can be reduced to a sequence of binary

propositions. For instance, if we are interested in a hypothesis about the size of an effect,

we can always reduce it to a sequence of binary hypothesis of the form “the size is greater

than ai” for some sequence of numbers ai. Second, it is natural in a Bayesian framework

to consider probabilities as parameters and to compute expectations by integrating over

their posterior distributions, and thus producing continuous values. For instance, in the

case of a drug treatment, we may have a parameter p that represents the probability of a

drug curing an individual randomly drawn from a certain population. We may have a prior

P (p) and derive a posterior distribution P (p|D) from some data D. By integrating over

P (p|D), one can easily compute effect sizes in the form of the expected mean and standard

deviation of the number of people to be cured by the drug in a similar population of size

N . Specific examples are given below.

4 Related Work

This is of course not the first time that Bayesian ideas are applied to issues of causality.

Following the work of Rosenbaum and Rubin (1983) on propensity score adjustment (based

on a model for treatment assignment mechanism) to control for the effect of unknown
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and non-ignorable confounding variables, there have been many attempts to develop a

comparable Bayesian method (Hoshino, 2008; McCandless et al., 2009; An, 2010; Kaplan

and Chen, 2012; Matthew Zigler and Dominici, 2014; Chen and Kaplan, 2015; Graham

et al., 2015). Saarela et al. (2016) propose an alternative approach based on posterior

predictive inference, by using the inverse probability of treatment to decouple the outcome

regression model from the treatment assignment model. This alternative approach has been

previously discussed by several authors in the context of change of probability measures

(Rysland, 2011; Chakraborty and E.M. Moodie, 2013). Such methods use the concept

of potential outcomes to define causal effects explicitly, so that Bayesian methods can be

used for the joint distribution of the potential outcomes, and probability statements can

be provided on the effect size using the resulting posterior distribution.

Rubin (1978) argues that, while Bayesian inference is complicated for nonignorable

treatment assignment, principled Bayesian methods for causal inference could still be used

when the treatment assignment is either unconfounded or confounded but ignorable. In

fact, the Bayesian perspective could be quite useful for handling complex causal inference

problems. For example, Imbens and Rubin (1997) propose a novel framework for Bayesian

causal inference in randomized experiments with noncompliance. They argue that while

Bayesian methods never account for design based standard errors, the compliance behavior

of subjects should be taken into account. Schwartz et al. (2011) address the issue of inter-

mediate variables in causal inference by using a Dirichlet process mixture model. Daniels

et al. (2012) also propose a Bayesian approach for the causal effect of mediation. Dawid

et al. (2016) use a personalist Bayesian perspective to discuss the distinction between the

“effect of causes” (EoC) and the “causes of effects” (CoE), especially when investigating

a case in a Court of Law. They argue that while statisticians are mainly concerned with

EoC, it is unclear how statistical methods could be used for CoE, which is typically what

a Court of Law needs in order to assign responsibility for a given undesirable outcome.

Although they admit that this problem might not have a well-determined answer, they

show that it is possible to find bounds for the “probability of causation” using a Bayesian

approach.

Here, we advocate using the foundations of Bayesian statistics as a general and unifying
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framework for causality. This framework, as described in Section 3, focuses on computing

posterior probabilities, but it does not prescribe how to use these probabilities, for instance

in hypothesis testing. In Bayesian statistics, hypothesis testing is commonly discussed

within the framework of decision theory, where the goal becomes the minimization of the

posterior risk with respect to a loss function. When using a convenient, but not necessarily

optimal, 0-1 loss function, the minimization of the posterior risk reduces to choosing the

hypothesis with the higher posterior odds. This is of course sensitive to the choice of the

prior distribution, which is often assumed to be uniform leading to the notion of Bayes

factor, originally developed by Jeffreys (1935, 1961). Thus the Bayes factor is simply the

posterior odds for one hypothesis (e.g., the null hypothesis) when we decide not to express

preference for either hypothesis a priori. In other words: Posterior Odds = Bayes Factor

× Prior Odds:

P (H1|D)

P (H2|D)
=

P (D|H1)

P (D|H2)

P (H1)

P (H2)

As we can see, the Bayes factor B12 = P (D|H1)/P (D|H2) has the form of a likelihood

ratio (Kass and Raftery, 1995). Gûnel and Dickey (1974) discuss different Bayes factors,

under different sampling models, for two-way contingency tables.

5 Bayesian Causality Calculations

To see how causality may be assessed in a Bayesian fashion more precisely, let us first

proceed with the example above.

5.1 Example of Bayesian Causality Calculation (Car Collision)

We let D be the observation that Mr. Johnson is dead. We let A denote the fact that Mr.

Johnson was involved in a high speed collision and B = D the fact that Mr. Johnson is

dead. We denote by B ← A the hypothesis that the high speed collision was the cause of

Mr. Johnson’s death. Thus, within the Bayesian foundational framework, the fundamental

task is to compute P (B ← A|D,B).
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As a side note, this is very different from computing P (B|A) which is used in the area

of probabilistic causation (Anderson and Vastag, 2004; Cardenas et al., 2017).

From Bayes theorem we immediately have:

P (B ← A|D,B) = P (D|B ← A,B)P (B ← A|B)
P (D|B ← A,B)P (B ← A|B) + P (D|¬(B ← A),B)P (¬(B ← A)|B)

.

(5)

There are rational ways for assigning a numerical value to each term in this equation.

The numerical value may vary as a function of, for instance, the background knowledge

but this is a good thing, rather than a bad thing. It forces one to examine exactly which

assumptions go into the calculation. Furthermore, one can proceed with a robustness

analysis to show, for instance, that the posterior does not vary too much under different

assumptions, as shown below.

In this particular case, we first obviously have P (D|B ← A,B) = 1. For the prior,

P (B ← A|B) we could look at general statistics on how often collisions at 80 miles an hour

result in the death of the driver. Let us say that this occurs 95% of the time, then we could

use the prior: P (B ← A|B) = 0.95. Then obviously P (¬(B ← A)|B) = 0.05. Thus the

only term left to estimate, and the most interesting one, is: P (D|¬(B ← A),B).

To estimate P (D|¬(B ← A),B) requires some analysis and modeling, but the same

would be true in the other existing approaches to causality. Only for the purpose of

simplifying the discussion, let us assume that the only other possible cause of death for Mr.

Johnson is a heart attack, leaving out strokes, stray bullets, etc. Then basically we need

to estimate the probability that Mr. Johnson suffered a heart attack in the few seconds,

again to simplify let us say two seconds, before the collision. Again this probability could

be estimated rationally from background statistical data on the population. Here, only for

the sake of simplicity, we assume the model that at every second of human life there is

an independent probability ∼ 10−9 of suffering a heart attack. As a result, under these

assumptions, we have: P (D|¬(B ← A),B) ≈ 2× 10−9. In short, putting all these elements

together, leads us to the following degree of belief in the causal relationship:

P (B ← A|D,B) = 0.95

0.95 + 0.05× 2× 10−9
=

0.95

0.9500000001
≈ 0.999999999895 (6)
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As expected, one has a strong belief in the collision being the cause of Mr. Johnson’s death

both because high speed collisions have a high probability of resulting in death and because

alternative causes of death have low probability. The Bayesian framework allows one to

quantify and combine these two elements in a precise way. While in this case, the long

decimal expansion may seem like an overkill, it must be noted that there are legal settings

where very small probabilities matter, for instance in the case of establishing identity using

genetic profiling (Kaye, 1993; Waits et al., 2001; Buckleton et al., 2016).

It is easy to see in this case that the belief in a causal relationship is robust in that most

of the decimals would remain unchanged if the probability of dying in a high speed collision

was x = 0.9 instead of 0.95 or the instantaneous probability of heart attack y = 10−8 rather

than 10−9. In fact, for sensitivity analysis purposes, the derivative of the posterior with

respect to these quantities can easily be computed and analyzed as we have:

P (B ← A|D,B) = x

x+ (1− x)2y
(7)

Likewise, one can modify the prior and analyze the effects of such a change. For instance

under an uninformative, maximum entropy, prior P (B ← A|B) = P (¬(B ← A)|B) = 0.5.

In this case,

P (B ← A|D,B) = 0.5

0.5 + 0.5× 2× 10−9
=

0.5

0.5000000001
≈ 0.9999999998 (8)

again resulting only in a minor change over the value obtained in Equation 6.

The analysis above was done for a specific individual (Mr. Johnson) and in a causes

of effects setting. It should be clear however that with the proper adjustments similar

calculations can be done for generic cases, or for the effects of causes setting. Once A and

B have been defined with sufficient precision, all these variations formally require:

1. Defining a prior distribution P (B ← A|B) on the causal hypothesis, regardless of its

form or definition; and

2. Computing likelihoods expressions of the form: P (D|(B ← A),B) and P (D|¬(B ←

A),B).
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The important work lies in these two steps. In particular, these steps may require

building a complex Bayesian hierarchical model. But this is no different from Bayesian

modeling in any other situation.

5.2 Example of Experimental Study (Aspirin)

As another example, consider the 2 × 2 contingency table (Table 1) (Dawid et al., 2014)

reporting the results of a fictitious double-blind randomized experiment involving 200 indi-

viduals, with 100 given aspirin tablets, and 100 chalk tablets (the control). Let us denote

by D1 the data corresponding to the first row of the Table (control), and by D2 the data

corresponding to the second row (experiment). Here one is interested in possible causal

relationships between taking aspirin and recovery from headaches, possibly in the forms:

• Effects of Causes: I have a headache. I am wondering whether to take aspirin. Will

taking aspirin cause my headache to disappear?

• Causes of Effects: I had a headache and took aspirin. My headache went away. Was

that caused by the aspirin only?

Table 1: Contigency Table. The table reporting the data D = D1 ∪ D2 resulting from

a fictitious double-blind randomized experiment involving 200 individuals, with 100 given

chalk tablets (the control) (D1), and 100 aspirin tablets (D2). The patients take their

assigned tablets the next time they get a headache, and record how long it is until the

headache has gone. Recovery is interpreted as (for instance) “headache disappears within

30 minutes.”

No Recovery Recovery Total

Chalk (D1) 88 12 100

Aspirin (D2) 70 30 100

The Effects of Cause problem can be written as estimating P (B ← A|D,B) where

A is “I take aspirin”, B is “my headache will disappear within 30 minutes” and B is “I
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have a headache”. The Cause of Effects problem can be written as estimating P ([B ←

A] ∧ ¬[B ← Other]|D,B) where A is “I took aspirin”, B is “my headache disappeared

within 30 minutes”, B is “I had a headache”, and ¬[B ← Other] is meant to capture the

“only” portion of the statement, i.e. to rule out other causes, as described below.

It should first be obvious from the data that none of these questions has a simple yes/no

answer and that these questions can only be addressed in probabilistic terms. There are

two factors that complicate the analysis somewhat (Figure 1). The first factor is that D1

shows that 12 out of 100 people recovered from headache when given chalk. The observed

recovery could be due to “natural causes” or to placebo effects. No data about recovery

from headache in controls who have not taken a pill is available to try to disentangle these

two effects. Thus to slightly simplify the analysis, we will lump natural causes and placebo

effects into a single cause called “Other”. The second factor is that regardless of whether

there is a placebo effect or not, there is potentially some overlap between recovery due to

aspirin and recovery due to other causes (e.g. through different biochemical pathways) and

no direct observation of this overlap is available to us.

Figure 1: Venn diagrams and modeling assumptions associated with the data set D2.

To build a Bayesian probabilistic model of the data in Table 1, we assume an overall

model characterized by two probabilities p and q, which are the parameters of this model:

p is the conditional probability of recovery from a headache due to Other causes, and q is

the conditional probability of recovery from a headache due to Aspirin.

It is natural to put Beta priors on the probabilities p and q, so that:
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P (p) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1 and P (q) =

Γ(c+ d)

Γ(c)Γ(d)
qc−1(1− q)d−1 (9)

with a > 0, b > 0, c > 0 and d > 0. The data D1 does not contain information about q

but it immediately leads to a marginal Beta posterior distribution for p:

P (p|D1) =
Γ(a+ b+ 100)

Γ(a+ 12)Γ(b+ 88)
pa+11(1− p)b+87 (10)

which we can take as the new prior on p before seeing D2. Assuming independence of the

priors, prior to seeing D2 the complete prior is given by:

P (p, q) = P (p|D1)P (q) =
Γ(a+ b+ 100)

Γ(a+ 12)Γ(b+ 88)
pa+11(1− p)b+87 Γ(c+ d)

Γ(c)Γ(d)
qc−1(1− q)d−1 (11)

To complete the description of the model, we need to define the likelihood P (D2|p, q),

which requires dealing with the overlap issue. We assume that the action of Aspirin and

the Other causes are independent. Thus for fixed p and q, we have a four-dimensional

multinomial distribution with probabilities: p(1−q), q(1−p), pq and (1−p)(1−q) (Figure

2). Thus, in general, in this model the probability of observing a corresponding set of

counts N = n1 + n2 + n3 + n4 is given by:

P (n1, n2, n3, n4|p, q) =
N !

n1!n2!n3!n4!
(p(1− q))n1(q(1− p)n2(pq)n3((1− p)(1− q))n4 (12)

In Table 1 , N = 100 and n1, n2, and n3 are lumped together such that: n1+n2+n3 = 30.

Thus the likelihood P (D2|p, q) is given by:

30∑
n1=0

30−n1∑
n2=0

100!

n1!n2!n3!70!
(p(1− q))n1(q(1− p)n2(pq)30−n1−n2n3((1− p)(1− q))70 (13)

or:

30∑
n1=0

30−n1∑
n2=0

(
100

n1

)
[p(1−q)]n1

(
100− n1

n2

)
[q(1−p)]n2 [pq]k2

(
100− n1 − n2

30− n1 − n2

)
[pq]30−n1−n2 [(1−p)(1−q)]70

(14)
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Figure 2: Venn diagrams and modeling assumptions associated with the data set D2. We

assume that, for fixed p and q, Other and Aspirin act independently.

where n1 is the number of people recovering from Other only, and n2 is the number of

people recovering from Aspirin only. Note that this could be regarded as a form of missing

data imputation.

The model is now complete and, as in any other Bayesian modeling situation, one can

compute the posterior distribution on p and q, their modal or mean a posteriori point

estimates, as well as any other expectations or integrals with respect to this posterior

distribution as a function of the parameters (a, b, c, d) of the prior distribution. For instance,

for fixed p and q, the probability associated with the Effects of Causes is: q if we interpret it

as including the possibility of a coexisting Other effect (or q−pq if we interpret it as a pure

aspirin effect). Likewise, the probability associated with the Causes of Effects question is

obtained by noting that the total probability of recovery from headache is p+q−pq . Thus

it is given by: q/(p + q − pq) in same broad sense as above(or (q − pq)/(p + q − pq) if we

disallow any coexisting Other effect). It is worth noting how the probabilistic framework

can precisely disambiguate the semantic ambiguity hidden behind common, but vague,

language. Finally, inferences for these probabilities are obtained based on the joint posterior

for (p, q); this is easily accomplished using standard MCMC methods.

More precisely, assuming a uniform prior on p and q (a = b = c = d = 1), Figure 3
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shows the joint (left) and marginal (right) posterior distributions on the parameters p and

q. The marginal density curves (in the right panel of Figure 3) are based on approximate

Beta distributions fitted to posterior samples. The posterior mean, standard deviation,

and 95% credible interval (CI) for each parameter are provided in Table 2. We have also

included the estimates for the Causes of Effects, q/(q + p− pq). As we can see, we expect

that on average 20% of people with headache feel better after taking aspirin. Also, if a

person’s headache disappears after taking aspirin, the estimated probability that this is

in fact due to taking aspirin is 0.65. For comparison, the p-value using Pearson’s χ2 test

of independence is 0.003. That is, we can reject the null hypothesis at 0.01 significance

level and conclude that aspirin helps cure headache. (Within the frequentist framework, we

assume that the study is designed as a randomized experiment.) We can also compute the

Bayes factor against the null hypothesis (independence). The Bayes factor is 19.34 which

is generally considered as “strong evidence”.
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Figure 3: Joint (left) and marginal (right) distributions of p and q for the aspirin example.

Figure 4 shows how our estimates of p and q change if we use other priors instead

of Uniform(0, 1) for p and q. In this case, we allow the prior means for p and q, i.e.,

a/(a + b) and c/c + d respectively, to change from 0.1 to 0.9. To this end, we set a and c

to 0.1, 0.2, . . . , 0.9, and assume b = 1− a and d = 1− c. As we can see, our estimates are
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Table 2: Posterior summaries for the aspirin example.

95% CI Posterior Mean Posterior Standard Deviation

p (0.07, 0.20) 0.13 0.03

q (0.08, 0.32) 0.20 0.06

q
q+p−pq

(0.34, 0.85) 0.65 0.12

not very sensitive to the choice of priors in this case.
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Figure 4: Sensitivity analysis: Posterior mean of p (left) and posterior mean of q (right)

for various prior means.

5.3 Example of Observational Study (Birthweight)

We now analyze a real study based on examining the relationship between low birthweight

(defined as birthweight less than 2.5 kg) and maternal smoking during pregnancy. The

data include a sample of 189 cases collected at Baystate Medical Center, Springfield, MA

during 1986 (Hosmer and Lemeshow, 1989). Table 3 provides the summary data, and

Figure 5 (left panel) shows the marginal posterior distributions of p and q. Here, p is the
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conditional probability of low birthweight due to other causes, and q is the conditional

probability of low birthweight caused by smoking. The corresponding 95% CI, posterior

means, and posterior standard deviations are presented in Table 4. As we can see, the

estimated probability that smoking would cause low birthweight is 0.21. For a smoking

mother with a low birthweight baby, there is a 0.48 probability that this has been caused

by smoking. For this example, the Bayes factor against the null hypothesis is 1.94, which is

considered as “weak evidence” (not worth more than a bare mention according to Jeffreys,

1961), and the p-value based on Pearson’s χ2 test is 0.04, which is generally considered

as marginally significant. Note that since this is not a randomized experiment, within the

frequentist framework we cannot conclude that the relationship is causal even though we

can reject the null hypothesis (no association) at 0.05 significance level. However, we can

use the propensity score adjustment method. To this end, we estimated the propensity score

using a logistic regression model with maternal age and race as covariates and maternal

smoking status as the outcome variable. We then stratified the subjects into five groups

based on their estimated propensity scores and used a Cochran–Mantel–Haenszel χ2 test

of the null hypothesis that smoking and low birthweight are conditionally independent in

each stratum. Using this approach, the p-value reduces to 0.005. However, whether we

can use this result to conclude that smoking during pregnancy can cause low birthweight

remains a controversial topic (Chapter 11, Pearl (2009)).

Table 3: Maternal smoking status and infant birthweight based on data collected from

Baystate Medical Center.

Normal birthweight Low birthweight

Non-smoking 86 29

Smoking during pregnancy 44 30

In a more recent study conducted during 1998-2000, (Wang et al., 2002) examined

741 mothers, who delivered singleton live births at Boston Medical Center. Among these

women, 174 were smokers and 567 were non-smokers. Table 5 shows the frequencies of ba-
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Figure 5: Marginal posterior distributions of p and q for infant birthweight datasets (left:

Baystate Medical Center during 1986, right: Boston Medical Center during 1998-2000)

Table 4: Posterior summaries for the birthweight example based on data collected from

Baystate Medical Center.

95% CI Posterior Mean Posterior Standard Deviation

p (0.18, 0.34) 0.26 0.04

q (0.04, 0.37) 0.21 0.08

q
q+p−pq

(0.12, 0.73) 0.48 0.16
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bies with normal birthweights and low birthweights for each group. The marginal posterior

probability distributions of p and q are shown in Figure 5 (right), and the corresponding

summaries (95% CI, mean, and standard deviation) are presented in Table 6. Here, we

used the approximate Beta distributions fitted to the marginal posterior distributions us-

ing the data from Baystate Medical Center as the priors for p and q. More specifically,

we assumed p ∼ Beta(30, 90) and q ∼ Beta(4, 17). Note that compared to the previous

example, the estimated probabilities are relatively smaller and have narrower credible in-

tervals. The Bayes factor in this case is 8.84 indicating “substantial evidence” against the

null hypothesis (independence). Using Pearson’s χ2 test, the p-value is 0.003. While there

is stronger evidence to reject the null hypothesis compared to the previous example, within

the frequentist framework we cannot still conclude that smoking causes low birthweight

since the study is not designed as a randomized experiment.

Table 5: Maternal smoking status and infant birthweight based on data collected from

Boston Medical Center.

Normal birthweight Low birthweight

Non-smoking 460 107

Smoking during pregnancy 122 52

Table 6: Posterior summaries for the birthweight example based on data collected from

Boston Medical Center.

95% CI Posterior Mean Posterior Standard Deviation

p (0.17, 0.23) 0.20 0.02

q (0.06, 0.22) 0.14 0.04

q
q+p−pq

(0.24, 0.60) 0.43 0.09
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6 Discussion

We have presented what we think ought to be the Bayesian framework for causality analysis.

In this framework, causality statements are viewed as hypotheses or models about the

world, and thus the fundamental problem of Bayesian causality analysis is to compute the

posterior of causal hypotheses, given the corresponding data and background information.

This framework comes straight out of the axiomatic foundation of Bayesian statistics. In

addition to its foundational consistency, one of its advantages is the uniformity with which

it treats different causal inference situations, including causal inference in specific or more

general cases, as well as forward (effects of causes) and reverse (causes of effects) causal

inference.

Treating causality relationships in terms of probabilities that can evolve in time as new

data are gathered seems natural to us, and consonant with scientific methodology. Consider

for instance the question of whether humans are the main cause of global warming or not.

The corresponding probability may have evolved from close to 0 in 1940, to 0.5 in the

1980s, to close to 1 in the 2020s.

It is not our goal to claim that the proposed Bayesian approach is better than any other

one, or to try to revisit the Bayesian versus frequentist dispute, although we note that to

the best of our knowledge there is no uniform, universally accepted, treatment of causality

problems within a frequentist framework. Rather, we view the proposed Bayesian approach

as a flexible framework that provides a complementary alternative to other statistical ap-

proaches for the analysis of causality relationships in a unified manner.

Within the Bayesian framework, we believe that causality is only one example of many

other areas of statistical inference and data science where historical developmental accidents

have led to unnecessary fragmentation, providing opportunities for creating more unified

views. An example of an area where unification has occurred to some extent is the area

of regularization, where it is well recognized that the addition of a regularizing term to an

objective function is often equivalent to the choice of a corresponding prior. An example of

area where the unification has not occurred in a systematic way is the area of variational

methods (Murphy, 2012).

The typical description of variational methods begins with a target probability distri-
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bution P (possibly a Bayesian posterior distribution) of interest. The distribution P is

considered intractable and thus one wishes to approximate P with some distribution Q

taken from a simpler (e.g. parameterized or factored) family of distributions Q. The vari-

ational approach prescription consists in choosing the distribution Q∗ that minimizes the

relative entropy between Q and P . Using a discrete formalism (P = (Pi) and Q = (Qi)):

Q∗ = min
Q⊂Q

∑
i

Qi log
Qi

Pi

= min

[
−H(Q)−

∑
i

Qi logPi

]
(15)

whereH(Q) is the entropy ofQ. The typical description then proceeds with proving some of

the nice properties of this approach, how it can be applied to an unnormalized distribution

P , and so forth.

However, from a Bayesian standpoint, this description may seem slightly ad hoc and

unprincipled since it involves an approximation to a degree of belief, which should itself

be Bayesian (incidentally approximation problems in general can often be cast in Bayesian

terms). In most variational cases, it is easy to correct this situation by noting that Equation

15 is equivalent to:

Q∗ = max
Q⊂Q

∏
i

PQi

i ×
e−H(Q)

Z
(16)

where Z is the normalizing constant of the entropic prior. In other words, variational

methods can viewed in a Bayesian perspective as maximum a posteriori maximization

(MAP) methods under a likelihood proportional to
∏

i P
Qi

i , with an entropic prior over the

approximating family of distributions Q. As a side note, this immediately suggests new

ideas such as contrasting the MAP approach with a mean posterior (MP) approach. In

short, we believe that a more systematic approach of Bayesian ideas may be one viable

approach, both for the purposes of theoretical developments and pedagogy, towards a more

unified treatment of currently fragmented areas of statistical inference and data science.
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